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Abstract—Image quality assessment (IQA) is an important
research area in image processing. Reduced-reference (RR) IQA
methods contained therein mainly aim to estimate image quality
degradations with partial information about the reference image.
Following the remarkable achievement of SSIM, structural infor-
mation has been recognized as one key factor, and has aroused
many image quality metrics so far. In this paper, we design a
structural degradation model (SDM). Then, the quality score
of an image is defined as a nonlinear combination, or SVM
based integration, of distance between the structural degradation
information of the original and distorted images. Accordingly,
a new RR IQA approach using the SDM model is exploited.
Experimental results on LIVE database are provided to justify
the superior prediction accuracy performance of the proposed
method as compared to three significant image quality metrics,
PSNR, SSIM and FEDM.

I. INTRODUCTION

Currently, perceptual image quality assessment (IQA) ap-
proaches with higher prediction accuracy become more ex-
tremely required, in both of the traditional area of image
compression and denoising, and the modern domain of medical
imaging and user experience. Generally, IQA methods can
be divided into two categories: subjective quality assessment
and objective quality assessment. The subjective assessment
algorithm should be the terminal quality gauge, but it is seldom
used because of its time-consuming and expensive shortages.
Hence, there has been an increasing interest in developing
objective IQA metrics since a decade ago.

According to the availability of reference images to be
compared with during the tests, objective IQA method can
be further classified into three kinds. Most approaches are
known as full-reference (FR) methods, assuming the reference
image is completely available. In plenty of practical applica-
tions, however, the reference image is not known, and no-
reference (NR) image quality metrics are then desirable. As
the tradeoff choice, the third type of reduced-reference (RR)
IQA approaches are mainly applied to the situation where the
reference image is only partially available and some extracted
features are made available as side information to help to
evaluate quality of the distorted image. From the viewpoint
of future application, the RR approach has remarkably high
value, not only as an important bridge effect between FR and
NR, but also as the possible alternative method of NR. In this
work, we focus on RR IQA approach.

Existing RR image quality metrics consist of four types.
To model image distortions, the first type of methods [1]-[4]
are mostly designed for specific application environments. The
second type of approaches resort to model the human visual
system (HVS) [5]-[6], where perceptual features motivated
from computational models of low level vision were extracted
to provide a reduced description of the image. Assuming
that most real-world image distortions disturb image statistics
and make the distorted image “unnatural”, the third type of
methods are exploited based on natural image statistics [7]-
[8]. Finally, the fourth type of methods are recently proposed
free energy based distortion metric (FEDM) [9]. Its underlying
idea mainly depends on the free energy principle, proposed by
Friston [10]-[11] to explain and unify several brain theories in
biological and physical sciences, and the internal generative
model to compute the gap between the encountered scene and
brains prediction as the estimation of image quality.

It is well-known that the response of HVS is quite differ-
ent for various spatial frequency [12]. It will be natural to
associate that, after low-pass filtering, the spatial frequency
response of a white noise image will largely reduce, while
the spatial frequency response of a Gaussian blur distorted
image will just drop a little. Besides, we also observed that
the larger changes of spatial frequency responses generally
correspond to white noise images with lower quality, and
higher quality images contaminated by other four distortion
types. Summarily, it can be concluded that images with various
distortion categories and quality ranks, which are processed by
low-pass filtering, have different degrees of spatial frequency
response decrease. Accordingly, this paper defines structural
degradation information of the original and distorted images,
referring to some definitions in [13]-[14]. Then, the structural
degradation model (SDM) based RR image quality metric
can be developed by an effective nonlinear combination, or
support vector machine (SVM) [15] based integration, of the
distance between the above-mentioned two groups of structural
degradation information.

The remainder of this paper is organized as follows. Sec-
tion II first presents the definition of structural degradation
information, and then proposes the SDM model based RR
IQA approach. In Section III, experimental results using the
laboratory for image and video engineering (LIVE) database
[16] are reported and analyzed. Finally, concluding remarks
and directions for future research are given in Section IV.
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Fig. 1. The framework of the proposed SDM based RR IQA approach.

II. THE PREDICTION MODEL

The proposed RR IQA algorithm mainly has three steps,
and its whole framework is clearly shown in Fig. 1. Among
the three dashed frames, the first step is employed to extract
structural degradation information from reference images as
side information in the encoding ends. The other two steps are
the main body of the proposed method. More specific steps
are as follows.

First of all, for an original and clear image X , its structural
degradation information can be defined as

SDm,N (X) = SSIM(µX(0.1), µX(1.5)) (1)

SDv,N (X) = SSIM(σX(0.1), σX(1.5)) (2)

where SSIM(·) was given in [13]. Referring to the definitions
of µX and σX in [13]-[14], we redefine µX(d) and σX(d) as

Fµ(X) = µX(d) =
1

N2

N∑
i=1

N∑
j=1

wijxij (3)

Fσ(X) = σ2
X(d) =

1

N2 − 1

N∑
i=1

N∑
j=1

wij(xij − µX(d))2 (4)

with w = {wij |i, j = 1, . . . , N}, satisfying Sum(w) = 1 and
V ar(w) = d (Sum(·) and V ar(·) are used to compute the
sum and variance values). Thus, the features SDm,N (X) and
SDv,N (X) are extracted from original image X .

With the same definitions of Eq. (1)-(2), the structural degra-
dation information for distorted image Y can be evaluated by

SDm,N (Y ) = SSIM(µY (0.1), µY (1.5)), (5)

SDv,N (Y ) = SSIM(σY (0.1), σY (1.5)). (6)

Then, following the definition of Dm and Dv as the distance
between the original and distorted images’ features:

Dm,N = SDm,N (X)− SDm,N (Y ), (7)

Dv,N = SDv,N (X)− SDv,N (Y ), (8)

an interesting phenomenon can be viewed in Fig. 2 (a), which
shows that both of Dm,N and Dv,N have the ability of
approximately predicting the image quality score for each
specific distortion type. However, we noticed that the Dm,N

and Dv,N values of JPEG compressed images almost equals
to zero. So, we further classify them as Dm,i,N , Dm,e,N (the
Dm,N value for interior parts and exterior parts of blocks), and
Dv,i,N , Dv,e,N (the Dv value for interior parts and exterior
parts of blocks) to overcome the obstacle of no effect to JPEG
distortion. As illustrated in Fig. 2 (b)-(c), for JPEG compressed
images, the Dm,i,N and Dm,e,N (or Dv,i,N and Dv,e,N ) have
quite different values, while they are almost the same for
images with other four distortion types. Furthermore, it can be
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(a) Dm,N and Dv,N (b) Dm,i,N and Dv,i,N (c) Dm,e,N and Dv,e,N

Fig. 2. Scatter plots of six different distance values ((a): Dm,N and Dv,N;
(b): Dm,i,N and Dv,i,N; (c): Dm,e,N and Dv,e,N) vs. DMOS on LIVE database
for five categories of image distortions.

easily found that the quality levels also have quite important
influence, especially for white noise images.

Eventually, based on all the four variables’ features, we
define an effective nonlinear combination of them to measure
the image quality as SDM model:

SDM =
∑

s={m,v},t={i,e}

G(Ds,t,N ) (9)

where G(Ds,t,N ) is defined as

G(Ds,t,N ) = Hp(Ds,t,N )

=

{
Hl (Ds,t,N ) if Hl(Ds,t,N ) ≤ ξthr
Hh(Ds,t,N ) otherwise (10)

with ξthr being the threshold to discriminate high and low
quality levels. And Hp(Ds,t,N ) can be evaluated by

Hp(Ds,t,N ) = λt,p · (Ds,t,N )γs,t,p

+κs,t,p

{
(Ds,t,N )δs,t,p if Ds,t,N ≥ 0
(−Ds,t,N )θs,t,p otherwise (11)

where λt,p, κs,t,p, γs,t,p, δs,t,p and θs,t (s = {m, v}, t =
{i, e}, p = {l, h}) are model parameters. All the parameters
are achieved by training as illustrated later. Furthermore, it
will be natural to utilize SVM [15] for regression, and the
proposed S-SDM can be given by

S-SDM = SVM(Ds,t,N,f ,ms) (12)

where f represents the factor of down-sampling, following
the idea in [17], and ms is a model trained by SVM on the
LIVE database, which consists of 29 source images. Here, the
training and testing sets for Eq. (11)-(12) are totally content
independent. The training set includes 617 images derived
from 23 reference images, and the testing set contains the
162 images derived from the other 6.

III. EXPERIMENTAL RESULTS

Here, we consider a four-parameter logistic function that is
suggested by VQEG [18] as the nonlinear regression between
the subjective scores and the prediction scores of five metrics
PSNR, SSIM, FEDM and the exploited SDM and S-SDM
methods:

q(x) =
β1 − β2

1 + exp(−(x− β3)/β4)
+ β2 (13)

with x and q(x) being the input score and the mapped score,
respectively. The free parameters β1 to β4 are to be determined
during the curve fitting process.

Two commonly used performance metrics, Pearson linear
Correlation Coefficient (PLCC) and Spearman Rank-Order
Correlation Coefficient (SROCC) as suggested by VQEG [18],
are employed to further evaluate two competitive SDM metrics
and the other three methods, namely PSNR, SSIM and FEDM,
on LIVE database. Their values are tabulated in Table I, and
the scatter plots of S-SDM on LIVE database and five data
sets of different distortion types are shown in Fig. 3. It can be
seen that our proposed RR IQA paradigm has achieved much
better results than the most two popular image quality metric
PSNR and SSIM, and recently proposed FEDM.

Except superior performance, it is important to clarify
that our paradigm has three paramount merits: First, low
computational complexity and high execute speed because of
parallel processing; Second, strong portability due to the fact
that the proposed method can be computed by some basic
operations, such as addition and multiplication, and the SSIM
algorithm, which has been inserted into a great many systems
and softwares as one of benchmark image quality metrics;
Third, only four numbers of SDm,i,N (X), SDm,e,N (X),
SDv,i,N (X) and SDv,e,N (X) as features extracted from the
original image, which is usually negligible as compared to the
image files size and can be encoded precisely with only a few
bits in the header file.

TABLE I
PEARSON LINEAR CORRELATION COEFFICIENT (PLCC) AND SPEARMAN

RANK-ORDER CORRELATION COEFFICIENT (SROCC) VALUES (AFTER
NONLINEAR REGRESSION) OF PSNR, SSIM, FEDM AND THE PROPOSED
SDM AND S-SDM METHODS ON WHOLE LIVE DATABASE (779 IMAGES),

AND FIVE DATA SETS OF DIFFERENT DISTORTION CATEGORIES.

Pearson Linear Correlation Coefficient (PLCC)
FEDM SDM PSNR SSIM S-SDM

JP2K (169) 0.9260 0.9375 0.8996 0.9410 0.9738
JPEG (175) 0.9210 0.9591 0.8878 0.9504 0.9476
White noise (145) 0.9250 0.9718 0.9860 0.9697 0.9911
Gaussian blur (145) 0.9020 0.9240 0.7834 0.8743 0.9339
Fast-fading (145) 0.8750 0.9300 0.8895 0.9428 0.8555
All (779) − − 0.8701 0.9014 0.9330

Spearman Rank-Order Correlation Coefficient (SROCC)
FEDM SDM PSNR SSIM S-SDM

JP2K (169) 0.9200 0.9410 0.8954 0.9355 0.9703
JPEG (175) 0.9225 0.9520 0.8809 0.9449 0.9440
White noise (145) 0.9144 0.9697 0.9857 0.9625 0.9897
Gaussian blur (145) 0.9310 0.9332 0.7823 0.8944 0.9257
Fast-fading (145) 0.8520 0.9418 0.8907 0.9413 0.8439
All (779) − − 0.8755 0.9103 0.9364
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Fig. 3. Scatter plots of DMOS vs. the proposed S-SDM approach on the whole LIVE database and five data sets of different distortion types.

IV. CONCLUSION

In this paper, we develop a new structural degradation
model inspired RR IQA paradigm, which is mainly relying
on different spatial frequency response decrease for various
distortion types and quality levels. Experimental results on
LIVE database verify that the performance of the proposed
method is clearly better than full-reference PSNR and SSIM,
and recently proposed FEDM algorithms. Moreover, our RR
IQA approach also has other inspiring merits, such as low
computational complexity, high execute speed, strong porta-
bility, and very little reduced-reference information.

Besides, it was also found that the extracted features of
FEDM and SDM have strong dependency, which will provide
the possible opportunity to extend the proposed method to an
effective no-reference image quality assessment approach in
the near future.
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